
 

920M EXPLANATIONS    Terry Froggatt October 2023  Page 1 of 16  

 

 

        920M EXPLANATIONS 

        Terry Froggatt, October 2023. 

 

 

Very Brief Introduction 

 

These notes relate to the 920M digital computers manufactured by 

the Mobile Computing Division of Elliott Automation (later GEC) 

at Borehamwood in the late 1960s and through the 1970s. 

Specifically these notes relate to the MCM7 variant of the 920M. 

 

The 920M is a rugged computer measuring 32cm x 19cm x 19cm, 

using mostly DTL flatpack logic, derived from the successful 

19inch rack-mounted 920B and 903 discrete transistor computers, 

and using essentially the same instruction set. Both use an 

18-bit word and have an internal store capacity of 8192 words. 

 

The 920M is in three hinged sections which open out to form a 

"Z" or "N". The upper section contains the Ferrite Store, the 

middle section contains the Registers, and the lower section 

contains the Control logic. Each section contains a multi-layer 

motherboard or backplane, although I've used the term "deck", 

and each deck comprises a Front half-deck and Back half-deck. 

All pins are uniquely identified by printing on the decks. 

 

At the time of writing in 2023, there are still several 903s 

in working order, and importantly all of the 920B/903 engineering 

documentation is available, at several places and now on line. 

In contrast, hardly any engineering information was in the public 

domain for the 920Ms, hence these notes and associated documents. 

 

I wrote software to support the Sepecat Jaguar aircraft's flight 

program development. Initially code was developed on the MCM2 (with 

a 5usec store & 1usec logic cycle) and was switched to the MCM5 

(with a 2usec store & 1usec logic cycle) when it became available. 

I recently found a note written by me in about 1970, implying that 

I was then aware of a future MCM7, but saying no more about it. 

 

The observed MCM7 timings match those of the MCM5, and my 

working hypothesis is that an MCM7 is an MCM5, with the 

extra store connector and some associated components removed. 

But my memory is that the MCM2 & MCM5 control & display panels 

looked the same as those on a 920B/903, although I've found that 

the MCM7 interfaces would not be directly compatible with them. 

 

 

Information Sources 

 

I've had the following since I worked at Elliotts, none of 

which contain any circuit information, beyond a mention of "DTL": 

   "Programming Compatibility of 920 Series Computers" 

      typewritten note by Peter Lawrence, November 1965. 

   "Elliott-Automation 900 Series Small Low-cost Computers" 

      yellow sales brochure including photographs 

      of a 920M under construction and of an LSA 566. 

   "Elliott MCS 920 M Facts" orange card, October 1968, 

      which rather complicates the instruction set. 

   "Elliott MCS920M Computer" yellow flyer for MCM2. 

   "Elliott MCS920M" gold brochure for MCM2. 

   "Elliott MCS920M" yellow brochure for MCM5. 

 

My own synopsis of the Elliott 900-Series, written in 2004, 

   is on my website at www.tjfroggatt.plus.com. 

 

In July 2021, Dr Erik Baigar found: 



 

920M EXPLANATIONS    Terry Froggatt October 2023  Page 2 of 16  

 

   "Technical Information" typewritten notes & diagrams for 

      the 920M, by the Aviation Service & Repair Division 

      of Elliott Automation at Rochester Kent, including 

      a full page "920M CONTROL SEQUENCE (MICROPROGRAM)". 

The discovery of a potentially appropriate microprogram is what 

persuaded me that I might be able to understand how the 920M worked. 

In places it is barely readable, but I've been able to produce a 

readable A3 version of it, in UPCHART.PDF. 

 

In February 2022, Dr Andrew Herbert added: 

   "AP 101B-3101-3A Chapter 71" Jaguar Navigation Attack System 

      mechanical installation diagrams, of no immediate use, and 

   "AP 101B-3101-10KB1 Chapter 71" Jaguar Navigation Attack System 

      electrical installation diagrams, which confirmed that I 

      had correctly deduced the Application Interface on PLC. 

 

In May 2023, Bob Eager pointed me at: 

   "MCS 920C Computer Specification, January 1968", which confirmed 

      some of my findings about the control panel interface. 

 

I have had 920M MCM7 serial number 5343 here, one of three MCM7s 

   purchased by Dr Erik Baigar from eBay, since September 2019. 

I have had 920M MCM7 serial number 88 here, one of three MCM7s 

   from the Rochester Avionic Archives, since Summer 2021. 

Both were working during the summer of 2020, 

   neither are working at the time of writing in 2023, 

   but it has still been possible to deduce their wiring, 

   and to check some aspects of them by powering them up. 

 

I've regularly reported my progress in the Computer Conservation 

   Society's "Resurrection" journal, available on line at 

   www.computerconservationsociety.org/resurrection.htm. 

 

I've produced the following documents which effectively 

define the control & register decks of the 920M MCM7: 

   What the Logic Sub-Assemblies (LSAs) on these decks do, 

      see LOGICSUB.PDF, also CONJECTU.PDF; 

   Where the LSAs are on these two decks, 

      see CON-DECK.PDF and REG-DECK.PDF; 

   The wiring within all three decks, 

      see WIRING.PDF; 

   The external interfaces, and the interface with the store, 

      see INTERFAC.PDF. 

 

WIRING.PDF is a searchable text database, showing all pins 

connected to a given signal. It was derived from MCM7 5343 and 

was checked against MCM7 88. It includes every LSA on all three 

decks (control, register, & store), and it also notes where 

signals cross the half-deck bridges or the inter-deck hinges, and 

it gives some information about power and marginal test wiring. 

(I believe I have covered all important pins, but I've not covered 

"pin 19" on LSAs J1 to P1 or most of rows T1/T2/Z1/Z2, in the 

store. These might be related to the 920C "test forcing signals"). 

 

From this I've derived the "dual" representation, namely, 

conventional circuit diagrams, showing all signals connected 

to a given LSA or gate: in CON-CIRC.PDF and REG-CIRC.PDF. 

These do not include the store deck, or the bridge & hinge data, 

or direct links between connectors not otherwise connected. 

In the event of any conflict, WIRING.PDF is more trustworthy 

both than the notes in this file and than the circuit diagrams. 

 

The signal names used in INTERFAC.PDF are locally meaningful and 

   are relatively wordy, whereas the signal names used in WIRING.PDF 

   are generally shorter, more cryptic, and are globally unique. 

The signal names used in CON-CIRC.PDF and REG-CIRC.PDF are almost all 

   derived automatically from WIRING.PDF and so are the same, except 

   that "~" for "not" in WIRING.PDF becomes an overbar in the Circuits. 



 

920M EXPLANATIONS    Terry Froggatt October 2023  Page 3 of 16  

 

Where signal names appear in CON-DECK.PDF and REG-DECK.PDF, 

   they are often further abbreviated to fit. 

The hash sign "#" represents "not equal". 

 

The file names on my website are case-sensitive 

   and need to be in upper case as shown above. 

The files are all searchable PDF. 

 

 

920M changes relative to 920B/903 
 

Some instructions on various machines in the 900-Series corrupt 

   the Q-register. On 920B, function 9 (jump if negative) corrupts 

   the Q-register, but on the 920M function 9 leaves the Q-register 

   unchanged. This is a minor improvement. 

   (Function 7, jump if zero, corrupts the Q-register on both, and 

   function 8, unconditional jump, corrupts the Q-register on neither). 

 

On both the 920B & 920M, the Block Transfer instruction uses the 

   A-register & Q-register to define the store start address & the 

   length of the transfer, and on both, Block Output leaves the last word 

   transferred in the A-register. The A-register on Block Input is left 

   unchanged on 920B, but is set to the last word transferred on 920M. 

   On both input & output, the Q-register is left unchanged on 920B 

   but is altered on 920M. This is a minor degradation, making it wise 

   to make no assumptions about the final values of the two registers. 

 

Whilst there is a "Block Transfer" signal on both the 920B & 920M, 

   I've not found the 920B's related "Last Word" signal on the 920M. 

 

On 920B, shifts in either direction can go to 2047 places. 

   After shifting 35 places, the A-register & Q-register will correctly 

   be either all 0s or all 1s (although it would be more accurate to 

   detect shifts over 36 places and set the result to zero by software), 

   but longer shifts can be usefully used for delays. 

On 920M, the Facts Card limits shifts to 36 places. In fact, shifts 

   of up to 63 places will give correct results, longer shifts can give 

   incorrect results, and shifts for delays are only linear in time 

   up to 47 places. I believe that this significant limit on shift 

   distances prompted a change to the floating-point package QF. 

 

By inspecting the single sheet 920M microprogram summary (above), 

   and by looking at the wiring of 920M 5343 here, I spotted a glitch 

   in Function 3, and Dr Erik Baigar ran a test program for me on his 

   working 920M, which confirmed this. In the Facts Cards for the 903 

   and for the 920M, and on an actual 920B/903, Function 3, "Store Q", 

   is defined to read the Q-register, shift this right one place, and 

   store it in the designated location. 

On the 920M, it shifts the Q-register right one place, stores it 

   in the designated location, then shifts the register back: 

   the least-significant bit is not recovered from the "Q00" latch 

   and so is lost. (It would be possible to correctly recover 

   Q00 into Q01 for left shifts only in Function 3, just as 

   A01 is copied into Q18 for right shifts except in Function 3 

   by D66/07 & D66/14: there are some spare gates). 

Function 3 is often used after a multiplication, to save the lower 17 

   bits of the sign-and-34-bits result, where the right shift is useful. 

   This lost bit is actually defined, in "Programming Compatibility of 

   920 Series Computers" to be the sign bit of the A-register before 

   the multiply (although the 920ATC, where it is the sign bit of the 

   other operand, got it wrong). But the Compatibility document, 

   which includes the 920M, and the Facts Cards, make no reference 

   to losing this bit from the Q-register itself. 

Does it matter? Well, losing a bit of the Q-register unexpectedly 

   certainly would, and in Airborne Computing Division we used 

   interrupt code which preserved all 18 bits of A and Q, rather than 

   the code shown in the Facts Cards. I've also used Function 3 



 

920M EXPLANATIONS    Terry Froggatt October 2023  Page 4 of 16  

 

   to halve something, or to clear a word of store without losing the 

   A-register. And it is perfectly legal to hold six characters in six-bit 

   code in A and Q. But presumably nobody has ever felt the need to 

   use Function 3 in a situation where they knowingly also have useful 

   information in that bottom bit. 

Dr Baigar has shown that this glitch is not present in his later 

   AMD-based 920MEs. We cannot tell whether this is because the 

   glitch was spotted and corrected, or it was never spotted 

   and the 920ME was simply implemented from the specification. 

(The hand-written note by Function 3 on the original microprogram diagram 

   looks something like "Trigger Read" & "Trigger Write" so is unrelated). 

 

In addition to the above differences which are visible to the 

   programmer, there are two major differences in implementation. 

 

Firstly the 920B has a 12-bit Process Counter and the 920M does not. 

On the 920B the Process Counter is used to count the words in 

   a Block Transfer whereas on the 920M the Q-register is used 

   (and hence corrupted) to hold the negated final store address. 

   On the 920B the Process Counter is used to count the 18 steps 

   of Multiply or Divide, and to count the number steps in a shift. 

   The 920B has a 3-bit microprogram counter (AA1,AA2,AA3) and a 

   Control-v-Function flag. 

On the 920M, the microprogram counter is extended to six bits, 

   with values 0 to 7 for Control and 8 to 15 for most Functions, 

   and with values 16 to 48 reserved to perform these counts 

   (hence the limitation on shifts). 

 

Secondly the 920B has a G-register, which is used to latch the 

   results of the Adder or Collator, and inputs from the PTS or IFU, 

   prior to writing them to the intended register (A,Q,M,J), 

   so potentially overwriting the inputs to the Adder or Collator. 

   On the 920M, each of the LSAs implementing the registers contains 

   a two-stage latch (so each effectively has its own G-register). 

An important consequence of this is that the 920M can perform a 

   one-step left or right shift of the A-register (via the Adder as 

   on 920B), and on the Q-register (via local wiring) at the same time. 

   This enables the Multiply, Divide, and Shift loops to go twice as 

   fast as they might otherwise do (and as the later 920ATC does in 

   some cases) and it simplifies transferring bits between Q18 & A01. 

(Another consequence is that Q shifted is not available, without 

   shifting Q itself, but this is no excuse for the Function 3 problem). 

 

 

Notes about the Interfaces 
 

The pin-outs of the external plugs & sockets and of the 

internal store interface are given in my INTERFAC.PDF. 

 

Some there are some 61-way connectors, and some 91-way 

connectors where only the first 82 pins are populated. 

Usefully, the relationship between the connector's pins and 

its four rows of deck pins is the same for all connectors, 

with the last connector pin (61 or 82) usually (but not always) 

connected to the chassis and not connected to its deck pin. 

 

Power supply interface on PLA 
 

The 920M MCM7 uses four power supplies, 

   their nominal voltages are: -5v +5v +12v +18v. 

There are two +5v supply rails inside the 920M, both must be connected: 

   +5v(store) supplies the store and all transmitters (type 573 LSAs) 

   +5v(logic) supplies the rest of the control & register decks. 

There are also +5v(aux) and +5v(aux), 

   related to LSAs at G52,G53,G55-57, which must be connected. 

Some pins are designated "(sense)". 

   These look like the pins in the Jaguar wiring, which are used 



 

920M EXPLANATIONS    Terry Froggatt October 2023  Page 5 of 16  

 

   to provide voltage feedback to the computer power supply in the 

   aircraft, (either to regulate the power supply or to force a 

   shutdown if things go awry?). 

There is a substantial load, especially on the +5v and ground 

   wiring, warranting thick &/or short connections. 

 

In my own home-built power supply I have connected: 

   -5v:  4 pins: 25 28 55 56 

   Gnd: 10 pins: 01 48 57 58 59 71 72 73 74 75 

   +5v:  6 pins: 15 23 42 43 66 67 

   12v:  2 pins: 60 61 

   18v:  3 pins: 33 35 62 

and I use +5v(sense) pin 47 to supply power to my TTL 

interface circuitry at the same voltage as seen by the 920M. 

 

Righly or wrongly, we have been using pin 21, called ~PowerGood, 

as a means of stopping, resetting, & starting the 920Ms. 

 

The +5v(logic) on single pins PLB/52 PLC/48 SKTH/43 indicates that 

CPU power is on, and perhaps powers a relay in the relevant device. 

It is not intended to power the device itself. In contrast, 

+5v is supplied on several pins to the control panel, and 

10v is supplied on several pins (between -5v & +5v) to the display unit. 

 

External store interface on PLB 
 

Although PLB and some associated LSAs are not present in an MCM7, 

the wiring is all present. The receivers for the 18 data inputs from 

the extra store are present within type 585 LSAs and are known to be 

inverting, confirming that the "data from store" is not inverted. 

 

I've assumed that the 18 data & 16 address outputs to the store 

would be provided by 17 type 573 LSAs each containing two similar 

inverting transmitters, in which case "data to store" is not inverted, 

but the address outputs are inverted. (Non-inverted address outputs 

could have been obtained by connecting the transmitter input to the 

inverse rather than direct J-register bit: without needing a different 

LSA type). The actual sense of the lower 13 address bits is unimportant 

(unless the store is going to be connected elsewhere), but the upper 

3 address bits do have to be decoded correctly to select the store. 

 

Regarding the control signals, I've also assumed that: 

F40 would be a type 583 dual receiver (for ExtRRpy & ExtWRpy) and 

F41 would be a type 573 dual transmitter (for ExtTw & ~ExtIst). 

On these assumptions, the External TR & TW are upward pulses (whereas 

Internal TR & TW are downward), the External Replies are upward (same 

as Internal), and Ignore Store is down for Ignore (same as Internal). 

 

In CON-DECK.PDF and REG-DECK.PDF, I have included the missing LSAs. 

But the modules with a struck-through position code are actually 

dummies in 5343 and 88. Module A61 is dummy even if PLB is present. 

 

Input & Output interfaces on PLC & SKTH 
 

SKTH is the Paper Tape Station interface (PTS), 

   most of which has been confirmed by use. 

Address bits "Teletype select" (bit 3, adds 4) and 

"Status select" (bit 1, adds 1) are provided, thus: 

   15 2048 Reader Input   15 6144 Punch Output 

   15 2049 Status Input   15 6145 Control Output 

   15 2052 TTY Input      15 6148 TTY Output 

The "~PTS Present" pin is grounded by connecting the PTS. 

 

PLC is the Application interface (IFU), 

   pin-outs confirmed by AP 101B-3101-10KB1 above. 

Whilst there is a "Block Transfer" signal 

   there is no "Last Word" signal. 



 

920M EXPLANATIONS    Terry Froggatt October 2023  Page 6 of 16  

 

 

Requests (SIP,SOP,RRQ,PRQ) & Replies (RIP,ROP,RAQ,PAQ) 

pulse upwards. Replies must come down promptly. 

 

The reader/punch/input/output Replies have separate receivers 

whose outputs are wire-ored together. So the four replies are 

interchangeable: In my rig I combine the punch & reader replies. 

The four reply pins themselves are not directly connected, 

if they were they could not be driven separately by TTL. 

 

Input instructions 15 3072 to 15 4095 appear to cause the 

920M to wait for a reply without having raised any request. 

 

Display Unit interface on SKTE & SKTF 
 

My memory from the Jaguar days is that we used the same display unit 

on the 920M variants MCM5 & MCM2 as we had been using on the 920B, 

However, the 920M MCM7 SKTE & SKTF interface is not 

directly compatible with a 920B/903 display unit; for example 

the signals are all inverted on the 920B but not on the 920M MCM7. 

It is certainly not compatible with the multiplexed display interface 

described in "MCS 920C Computer Specification, January 1968". 

 

In Airborne Computing Division we also had an AMU, "Accumulator 

Monitor Unit", which sat in the three cables that connect the 920M 

and the display unit. This could snapshot the A-register value 

of a running program when a given instruction/operand/peripheral 

address was used. It may well have included the required inverters. 

I cannot remember if we ever used the 920M and display unit without 

the AMU, although I do remember that the engineers cursed that the 

3.9Kohm resistors in the 920B had been changed to 10Kohm in the 920M. 

 

There are five -5volt pins and five +5volt pins but only four 

ground pins. I would imagine that the +/-5volt pins provides the 

10volts for the inverter which drives the neons, as on the 920B, 

whereas the ground pins provide the reference for the signals. 

 

As usual the final pin 61 of SKTF is Chassis, but 

unusually the final pin 61 of SKTE carries data. 

 

Control Panel interface on SKTG 
 

My memory from the Jaguar days is that we used the same control panel 

unit on the 920M variants MCM5 & MCM2 as we had been using on the 920B, 

as shown in a photograph on page 246 of Wireless World May 1970. 

However, the 920M MCM7 SKTG interface is not 

directly compatible with a 920B/903 control panel; 

in fact it looks closer to the 920C/905 control panel 

described in "MCS 920C Computer Specification, January 1968". 

 

The control panel of a 903 is marked "Elliott 903", and the 

electrically identical panel of a 920B is marked either 

generically "Elliott 920" or specifically "Elliott 920B", 

I cannot remember which, (but there are some in the Science Museum 

collection at Wroughton). And I cannot remember whether the 920M 

control panel which we used was marked "920" or "920B" or "920M". 

 

So there are three possibilities: 

   The SKTG interface has changed, 

      the MCM2 & MCM5 control panel is electrically the 

      same as a 920B/903 control panel (however marked), 

      whereas the MCM7 uses a 920C/905 style panel. 

   The SKTG interfaces for all MCMs are the same, but for Jaguar 

      development we used a control panel which was electrically 

      the same as a 920B/903 control panel (however marked), 

      with an interface box not visible to the programmers. 

   The SKTG interfaces for all MCMs are the same, but for Jaguar 



 

920M EXPLANATIONS    Terry Froggatt October 2023  Page 7 of 16  

 

      development we used a control panel which looked like a 

      920B/903 control panel but was electrically different. 

 

On the 920B/903, there is a Stop latch, set by (for example) the 

   Stop button and cleared by the Restart button on the control panel, 

   and there is a Reset latch, set by the Reset button 

   and cleared by the Jump button on the control panel. 

   The state of both latches is shown on control panel lamps. 

In the 920M MCM5, there is a Stop latch, but I've not found a 

   Reset latch, although there are outputs to drive both lamps. 

 

I've found that SKTG pin 33 performs the "Reset Key" function. It 

   is pulled low by a CPU resistor, and whilst it is held high by the 

   control panel, it turns the Reset lamp on, but it does not latch. 

   Either there is a latch in the control panel, or the Reset and 

   Jump buttons are replaced by a single Reset/Jump toggle switch. 

I've labelled SKTG pin 08 the "~Jump Key". It floats high and 

   when it is pulled low it inhibits the reset function of pin 33. 

   This suggests that earlier 920Ms did have the Reset latch. 

   (On 920C, pin 33 is "JUMP S.S" and pin 85 is "RESET S.S."). 

 

When no control panel is attached, all 18 word generator inputs 

   float high, and so appear as the instruction "/15 8191". But 

   pin 25, "Pull F down", and pin 27, "Pull N down" also float high. 

   These drive gates whose outputs pull the word generator down to 

   "8 8177" if no PTS is attached or to "8 8181" if it is attached. 

If power is applied to the 920M, with no control panel attached, 

   it will start at one of these addresses. 

 

SKTG/43 Panel to CPU: grounded for Cycle Repeat. 

SKTG/37 Panel to CPU: grounded for Cycle Stop. 

SKTG/15 Panel to CPU: grounded for Order Stop. 

SKTG/32 Panel to CPU: grounded for Enter Number Generator. 

SKTG/44 Panel to CPU: grounded for Obey Number Generator. 

SKTG/38 Panel to CPU: pulled low by a CPU resistor, 

                      pulsed upwards for Restart. 

SKTG/16 CPU to Panel: goes low if either SKTG/32 or SKTG/44 is low. 

SKTG/67 CPU to Panel: pulsed upwards when the CPU executes a jump function. 

 

On the 920C interface, pin 26 is the "Ready" lamp, 

   CPU to Panel, and is normally high. 

On the 920M, pin SKTG/26 is normally low, being the inverse of a 

   signal also present at U1/23 U1/31 U1/32 PLA/37 PLA/54 PLB/22. 

 

Internal store interface on U1 & U2 
 

U2/08, CPU to Store: Suppress Internal Store (SIS), as on 920B/903. 

   This tells the internal store to ignore all Read & Write requests 

   whenever any of J14,J15,J16 is high. On all 920M MCM7s seen, 

   SIS is strapped low by a pink link between E40/02 & E40/01. 

 

U2/31, CPU to Store: ~Read Request (~IntTR), pulses downwards. 

U2/44, Store to CPU: Read Reply (IntRRpy), pulses upwards. 

U2/42, CPU to Store: ~Write Request (~IntTW), pulses downwards. 

U1/50, Store to CPU: Write Reply (IntWRpy), pulses upwards. 

 

There is no "Store To M-Register" gating signal in the microprogram. 

   Rather: data from the Store to the CPU is strobed at the correct 

   time within the Read cycle within the store circuitry. But: 

U2/30, Store to CPU: ~Strobe Initial Instructions (~Strobe), pulses downwards. 

   The store strobe signal is sent to the CPU and gated with "J within 

   Initial Instructions", to form "Initial Instructions to M-Register". 

 

U2/43, CPU to Store: ~Ignore Store Output (~IntIst). 

   If this is low during a Read cycle. the read cycle is performed 

   but the store output is discarded, so forming a Clear cycle, 

   (as is required before writing new data from the M-register). 

   This signal is also pulled low by "J within Initial Instructions". 



 

920M EXPLANATIONS    Terry Froggatt October 2023  Page 8 of 16  

 

Notes about the Microprogram diagram 
 

The "920M CONTROL SEQUENCE (MICROPROGRAM)" on a single page 

   (page 16 of 24 in "Technical Information") was very hard to read, 

   but based on my knowledge of the 920B/903 microcode, 

   I was able to understand a good many blocks of the 920M microcode. 

Next I found the gates in the MCM7 5343 hardware which implemented 

   those blocks, which gave me a fuller understanding of some LSAs. 

   It was then possible to work the other way, from the hardware, 

   to work out what the rest of the microprogram diagram said. 

It does appear to be appropriate to the MCM7 variant of the 920M, 

   for example it correctly shows the error in Function 3. 

 

I've assumed that the term which often occurs before TR is "IST" 

   (rather than "TST") and it Inhibits or Ignores the STore output. 

The hard-to-read two-character waveform which appears with ETJ in 

   B-Modification and Set B-Register is "K1" (as on page 15 of 24 

   in "Technical Information" and as on 920B). This sets J1 and so 

   selects the B-Register rather than the Sequence Control Register. 

 

The microprogram diagram consists of blocks, 

   each of which represents a step of the microprogram; 

   each block is split into a left part then a right part, 

   which I've called "Phase1" and "Phase2". 

The left part of each block shows the gating waveforms which route 

   data into the adder or into the input side of a register latch. 

The right part of each block shows the waveforms which clock data 

   from the input part to the output part of a register latch, 

   or which initiate a store transfer. 

Before each step, the input part of all bits of all registers are 

   cleared (including the counter's 551 LSAs but not the counter's 

   560 LSAs); this is not shown in the microprogram (and there are 

   no 920B/903-style "0T" waveforms to clear specific registers); 

   but sometimes registers are sneakily cleared by the global 

   clear and their clock waveform with no gating waveform. 

A microprogram step number is written above each box. 

 

The microprogram decodes the 6-bit microprogram Counter 

(C-register) and the 4-bit I-register (Instruction 

Function Latch), and some other conditionals including C7. 

By default the counter is incremented by one between steps, 

and it wraps from 63 to 0, it does not carry into C7. 

Despite this, the step number in microprogram diagram is 

formed by adding 64 to the C-register to represent C7 true. 

 

Counter values 0 to 7 are "Control", shared by all functions; 

thereafter most functions only use counter values 8 to 10; 

multiply, divide, & shift also use values 16 to 63; 

11 to 14 are only used by (single or block) input and output. 

 

The STOP waveform in steps 01or65 and 11or75 does not stop the CPU; 

it merely indicates points where the microprogram is prepared 

to stop if asked to do so by ORDER STOP on the control panel. 

 

If the M-register bit 18 is zero in control step 4, 

the counter steps to 5 and C2(=2) is explicitly set, causing 

a jump to step 7, so as to bypass instruction modification. 

 

For functions 0,1,2,4,6,12,13, which require an operand from store, 

step 7 performs a store cycle to read this, to reduce the number 

of inputs on MtF FtJ TR TW by six. The step consumes a logic cycle 

even when no operand is required, probably because the I-register 

is not loaded soon enough (in step 4) to test for and skip it. 

 

Most instructions finish with a CLEARC1-6 waveform, 

but function 0, load B-register, also sets C1(=1) and so 

bypasses control step 0, which services interrupts. 



 

920M EXPLANATIONS    Terry Froggatt October 2023  Page 9 of 16  

 

Multiply, divide, and shifts finish when the counter wraps to zero. 

 

In Multiply (function 12) step 9, the counter steps to 10, and 

   C3(=4) & C6(=32) are explicitly set, causing a jump to step 46, where 

   18 multiply steps (46-63) are obeyed. (It's not clear why step 8 does 

   not include SUPPRESSCOUNT,C2,C3,C6, enabling step 9 to be omitted). 

In Divide (function 13) step 9, the counter does not step to 10, but 

   C3(=4) & C6(=32) are explicitly set, causing a jump to step 45, where 

   18 division steps (45-62) are obeyed, then a final transfer step. 

 

I was puzzled by the 2tQ waveform in the Division Algorithm. 

The 920B & 920M both start by shifting Q right then left to clear Q1. 

In the loop, if the two tested bits are the same: 

   the 920B/903 performs QtF 1tF LtG GtQ, 

      so the 1tF get shifted into Q2 and Q1 remains zero, 

   the 920M performs 2tQ QSL: 

      QSL will not set Q2 to one because Q1 is zero throughout, 

      but 2tQ will do so explicitly via inverse input on C08/06. 

So the algorithms are the same. 

The waveform "F18 TO something" appears twice in the left parts of 

   division steps, with a corresponding "something" in the right parts. 

   This could be an "X" (as on 920B), but I've represented it as a 

   "*" in my microprogram diagram and I call it "star" elsewhere. 

 

In Shift (function 14, M12=M13) step 9, the negated shift distance 

   is written into the counter (by CLEARC1-6 to clear all 6 bits, not shown 

   on the microprogram diagram, and by JtC which just sets the required 1s). 

But if this would set the counter in the range 1 to 15 (steps reserved for 

   control or other functions) then 16 is added (see circuit diagram) 

   which reduces the shift distance by 16 but still gives the correct 

   result (of all 0s or all 1s). 

If the shift distance is zero then the 16 is not added 

   and the instruction correctly exits to step 0. 

The "24to63" appearing above two microprogram steps should be "16to63". 

The shift direction is retained throughout in M13. 

 

Block Transfer (function 14, M12#M13) uses the M-register for transfers, 

   so the transfer direction in M13 is recorded in the bistable C7. 

The only other use of C7 is to distinguish the first pass 

   through the control sequence from subsequent passes. 

In Block Transfer step 14, the counter steps to 15, and 

   C3(=4) is explicitly reset, causing a jump back to step 11. 

The Block Transfer signal to PLC/68 is turned on by C=12or76 and is 

   turned off by CLEARC7, although neither is clear from the diagram. 

 

Input/Output (function 15) step 9 does nothing. It is not clear 

why steps 10 & 11 are not numbered 9 & 10. It is unlikely to be 

to reduce the number loads on the step 9 decode. It is possibly 

to allow the Peripheral Address to settle, (Block Transfer has 

two nonempty steps between setting and using the address). 

 

I deciphered Input/Output (function 15) step 10 by 

   reference to page 17 of 24 in "Technical Information". 

   "Z1" is described as the "select/reply latch", and 

   "Z2" is described as the "clock suppression latch". 

From the conditional (Z1,P11,P12,P13), "RCP" must be 

   "Program Terminate", although it is not clear what RCP stands for. 

 

There are two unrelated meanings of "D": 

   DtF: to gate the -1 input to the adders, 

   DtE: to set the program level, given the interrupts. 

 

 

 

 

 

 



 

920M EXPLANATIONS    Terry Froggatt October 2023  Page 10 of 16  

 

Notes about the Circuit diagrams 
 

On the circuit diagrams, I have printed the signal name for 

   all inputs from other pages and all outputs to other pages. 

If a signal is generated and used locally within the same page, 

   sometimes I join them with a line and omit the signal name, 

   sometimes I join them with a line and give the signal name 

   at one or both ends, and sometimes (for example in Initial 

   Instructions) I omit the line but give the signal name at both ends. 

Where "Reset" or "Phase1" or "Phase2" signals occur more than once 

   on a given page, I usually don't attempt to join them with lines. 

 

I appreciate that it is sometimes hard to spot that a signal which 

   is named and is used locally might also be used on another page. 

For example the register diagrams do not explicitly show that outputs 

   A18 M18 M13 M12 Q01 are also used on the OTHER CONDITIONALS page. 

 

The circuit diagrams do not explicitly show the sharing of inputs on 

   type 561 LSAs, even when two gates are near one another on the diagram. 

So for example ~Fn12.exit and ~Fn13.exit, which each have a C=63 input, 

   appear to have a redundant C6=1 input because it shared with another gate. 

 

The split between the circuit diagrams in CON-CIRC and REG-CIRC 

is not quite the same as the split between the Control Deck and 

Circuit Deck themselves. For example the I-Register and Peripheral 

Address Register, and some inverters, all on the Register Deck, 

are shown in CON-CIRC. 

 

REG-CIRC has one page per bit of the 18-bit word, and shows the 

A,Q,J,M registers, and the Adder and Collate circuit for that bit, 

as well as connections to the internal & external stores, to the 

Paper Tape Station, Application Interface, and Word Generator. 

 

Across the 920M Control & Register Decks, there are 8 columns of LSAs, 

marked "A" to "H", and in each column there are rows numbered 01 to 70. 

Rows 01-04 and 67-70 are used by the connectors, and 33-38 are 

used by the bridge between the half-decks, leaving 56 rows for 

the hinge connectors between the full-decks and for the LSAs. 

 

For reasons probably related to heat flow, the LSAs in rows 05-19 & 39-51 

   are inserted the opposite way round to the LSAs in rows 20-32 & 52-66, 

   and the pin numbering follows this, with pin 01 still usually ground. 

   The three rows for each of bits 5 and 9 actually straddle a reversal. 

As a consequence, the gating signals, which run down the columns 

   across 9 or 18 bits, might all have to cross over one another. 

   However, the register latches and the adder LSAs have several 

   equivalent inputs, which are exploited to minimise the crossovers; 

   as a result, the pin number for a given gating signal can vary. 

 

A further complication is that there are four flavours of the 

   LSA which implement carry with lookahead, see CONJECTU.PDF. 

These necessarily have some different pin-outs, but even those 

   aspects of these LSAs which are common to all four flavours (such as 

   the PTS & IFU inputs) use different pin-outs in different flavours. 

 

Because of these two complications, all 18 bits are different. 

Bits 1 to 8 have a J-bit and PTS I/O, 

   they use each type of carry LSA twice, and within each pair, 

   bits 1 to 4 use different adder input pins to bits 5 to 8. 

Bits 9 to 16 have a J-bit but no PTS. 

   they use each type of carry LSA twice, and within each pair, 

   bits 10 to 13 use different adder input pins to the other bits. 

Bits 17 & 18 have no J-bit or PTS, 

   and they use two different carry LSAs. 

And these are not the only differences, 

   for example some WG input bits have pull down gates, 

   also WG inputs to M toggle differently from adder inputs. 



 

920M EXPLANATIONS    Terry Froggatt October 2023  Page 11 of 16  

 

 

In REG-CIRC, I have drawn lines to show the classical "highway" signals 

   from the adder and collate unit outputs back round to the registers. 

Of course the left-shift & right-shift inputs to the A & Q registers 

   cannot be drawn as lines because they come from the adjacent pages. 

 

Each register page shows 3 or 4 "Phase1" signals, a total of 70 inputs, 

   which are driven by 8 buffers: "Phase1a" to "Phase1h". But whereas 

   gating signals are necessarily connected columnwise, Phase1 signals 

   are connected in groups bitwise. (For example, "Phase1d" provides: 

   2 inputs to bit 7, all 4 inputs to bit 8, and 2 inputs to bit 9). 

Given that a single LSA type 565 buffer gate output can drive up to 18 

   loads (for example F25/05 drives 18 AtF inputs) it looks as though 

   Phase1 & Phase2 inputs to LSA types 551 & 552 each present two loads. 

 

As stated earlier, before each microprogram step, the input 

   parts of all type 551 & 552 one-bit latches are cleared, 

The type 551 & 552 one-bit register latches can take their input 

   from one of three sources, each having a 2-input gate for data 

   and gating signals. Where an input is unused, one of these 

   two signals (but never both) is appropriately grounded. 

These input signals may be present before or during the phase1 

   clearing pulse, as well as necessarily being present after it. 

There is an ungated fourth input on 551 pin 6 which is inverted, 

   so needs no grounding where it is unused. The corresponding 

   552 pin 11 is always used (for inverted data from the store). 

 

The adder can take one of its inputs from the A or Q register 

   (gated by AtF or QtF) and the other input from the M register 

   or its inverse (gated by MtF or NtF) or from the J-register. 

Bit 1's carry-in "1TF" can add +1 to either or both sides. 

 

There are two different ways of subtracting +1. 

In control step C=3, 

   MtF DtF FtJ subtracts the +1 which has just been added to the SCR in M, 

   so DtF must inject -1 (all 1s) into the other (A or Q) side of the adder. 

In Function 7, Jump if Zero, 

   DtF is on the wrong adder side to add -1 to the A-register. 

   Step 8, the phase2 M without any phase1 ?tM waveforms clears M, 

   Step 9, NtF adds ~M = -1 (all 1s) and A, so placing A-1 in M, 

           but will also exit now without a jump if A < 0, 

   Step 10, exits with a jump if M < 0, namely if A < 1. 

 

The gating of the J-register by JtF is performed outside the adder. 

   (Moving it inside would need two extra pins, and none are spare. 

   Presumably J was chosen for eviction because it is only 16 bits. 

   I think that this leaves an unused gate in each adder which could 

   provide the inverted output needed by 9 bits: this would need two 

   flavours of adder, given that there are no pins for dual outputs). 

Pin 5 on the LSA type 554 adders is used bidirectionally: 

   M or its inverse is carried out from the adder into the carry module, 

   J is carried from the external J-gate into the adder module. 

 

Wherever RtA or LtA occurs, so does QSR or QSL, 

   but QSR & QSL also appear without RtA & LtA. 

The QSR gating waveform shifts: 

   Q01 into a latch which I've called "Q00", for use in Multiply, 

   Q02-Q18 into Q01-Q17, and 

   Adder01 into Q18 if F>=8 (Multiply Divide & Shift), 

      otherwise Q18 is cleared (Function 3), 

      (using gates D66/07 & D66/14 to give "ToQreg18"). 

The RtA gating waveform shifts: 

   Adder02-Adder18 into A01-A17, and 

   a signal which I've called "Adder19" into A18, this being generated 

      from the carry LSA on the same page (although not joined by a line) 

      by altering the 4-bit carry LSA sequence, replacing the usual 

      558 by a 559, which gives the required sign-bit regeneration. 

The LtA gating waveform shifts: 



 

920M EXPLANATIONS    Terry Froggatt October 2023  Page 12 of 16  

 

   Adder17-Adder01 into A18-A02, and 

   Q18 into A01. 

The QSL gating waveform shifts: 

   Q17-Q01 into Q18-Q02, and 

   Zero into Q01 by grounding C05/07 but allowing the btQ on C05/02. 

      (As noted above, Function 3 should shift Q00 in). 

 

Two steps in the microprogram for Division show waveform "F18t*" 

   which clock ~Adder18 into the inverse input pin 6 of latch F42, 

   which I've variously called "Star" or "Areg19". 

   Actually waveform AtF is used, which occurs in exactly the 

   right division steps (and which is harmless in other functions). 

~Adder18 is also tested within the Block Transfer loop. 

~Adder18 was originally derived from D66/02, but on all 920M MCM7s 

   seen, this pin has been isolated, and the signal is now taken from 

   D66/04 via a pink link, which slightly improves the worst-case time. 

 

The type 551 one-bit register latches each have 4 outputs: 

   direct outputs on pins 10 & 13 and inverse outputs on pins 12 & 14. 

The pin 10 & 14 outputs appear about 240nsec before pin 12 & 13 outputs, 

   possibly on the leading & trailing edges of the Phase2 pulse. 

Possibly, only the slower signals can be used around the highway, 

   whereas it is better to use the faster signals elsewhere. 

 

Specifically in the case of the J-register: 

Pin 13 "safe slow direct", all 16 bits, go to the display and to the adder. 

Pin 12 "safe slow inverse", bits 1-6, go via inverters on the register deck, 

   to the microprogram counter, where the direct signal is both used to 

   load the counter and is inverted again to isolate it for wire-oring. 

Pin 10 "extra early direct", goes three ways: 

   bits 1-4 and 14-16 via some inverters on the register deck, 

      to initial instructions, 

   all 16 bits via other inverters on the register deck, 

      bits 1-13 to internal store inverted & bits 14-16 to nowhere, 

   all 16 bits via Transmitters on the register deck, 

      to extra store, presumably inverted. 

Pin 14 "extra early inverse", goes two ways: 

   bits 1-13 via some inverters on the register deck, 

      to initial instructions, 

   all 16 bits via other inverters on the register deck, 

      bits 1-13 to internal store direct & bits 14-16 to nowhere, 

Some of the inverters listed above are shown on the circuit pages 

   where their outputs are used rather than on the register pages, 

I've left the unused direct & inverted bit 14-16 inverter outputs 

   unlabelled; they might be provision for a larger internal store. 

 

Where the waveforms M TR J all occur in the same right half of 

a microprogram step, the J is an input to the TR (Read) and the 

M is the output, which may be why J's "early" outputs go to store. 

(The need to specify J implies that the early outputs are not 

available in phase 1; rather that the early & late outputs are 

available on the leading & trailing edges of the phase 2 pulse). 

 

On the "INITIAL INSTRUCTIONS" circuit page: 

   The 509 LSA E47 is shown in three parts: the 2-input & 4-input gates 

      shown were originally just a type 564 LSA, to which the latch has 

      been added, probably adding just two more gates: the LSA is now 

      probably two 2*930. This latch is not displayed on SKTE or SKTF, 

      indeed the LSA has no such output. 

   The 1st column outputs provide the 2nd column inputs (suffixed "i"), 

   the 2nd column outputs provide the 3rd column inputs (~addresses), 

      but joining them with lines would be counterproductive. 

      Apart from SIS at E40, none of them are used elsewhere, 

 

On the "MICROPROGRAM COUNTER" circuit page: 

   There are gates to ensure that shift instructions can 

      only set the counter to zero or to between 16 and 63. 

   There are the usual 2 signals from Counter bit 6's LSA 551 to LSA 560, 



 

920M EXPLANATIONS    Terry Froggatt October 2023  Page 13 of 16  

 

      CtA6 from H30/13 to H29/06 and ~CtA6 from H30/12 to H29/09 (just like 

      the other five counter bits), but there are also some extra signals: 

         uninverted CtA6 to H21/02 (calculation of C#63), and 

         inverted ~CtA6 to H24/11 giving uninverted CtA6a on 

         H24/14 to G20/09 (~Fn13.sub) & G20/13 (~Fn13.add). 

      I'm not sure why these are used in preference to 

         the C6=0 and C6=1 outputs from LSA 560 H29. 

         or why H24 was used to get CtA6a, given CtA6. 

   I have drawn lines connecting the "~Clear6" signal, but to 

      avoid clutter I've not connected: Phase1 Phase2 JtC Reset. 

   JtC is used by twice by C5 on H28, but once by the other bits, 

      here seven gates are driven by a non-buffer gate. 

   The 551 LSAs are all cleared by the Phase1 signal, so it 

      follows that the 560 LSAs must remember the counter value, 

      confirmed by the ~~Reset signal, which clears them initially. 

   CYCLE REPEAT is implemented by grounding SKTG/43, 

      which, like the SUPPRESSCOUNT waveform, changes 

      the carry-in to the 560 LSA chain from 1 to 0. 

 

As on the 920B/903, the 2 upper bits of the Instruction Function 

   are fully decoded and the 2 lower bits of the Instruction 

   Function are fully decoded, see "I-REGISTER & FUNCTION DECODE". 

   It is not clear why Irem4#3 is calculated twice, by G40/05 & G42/02. 

Also fully decoded are counter states 8 to 10, see "COUNTER DECODE & C7". 

So the individual steps of most instructions can be decoded 

   by a 3-input gate, typically a type 561 LSA with shared inputs. 

A 561 also has one 4-input gate, sometimes used to test a conditional 

   (for example, output G16/04 has the same inputs as G16/02 plus A18). 

 

The maximum number of inputs seen on any gate is 14, on a 

   564 or 565 4-input gate plus all 10 inputs of a 566 expander. 

Some steps have been taken in the microcode to achieve this. 

As described earlier, for functions 0,1,2,4,6,12,13, which require 

   an operand from store, step 7 performs a store cycle to read this, 

   which reduces the number of inputs on MtF FtJ TR TW by 6. 

There are two further optimisations which cannot be deduced 

   from the microprogram diagram. 

For functions 0 to 7: step 8, the decode ~Fn<8.08 on G11/02 

   generates an MtF, reducing the number of MtF inputs by 7. 

For functions 0 1 8 9: step 8: the decode ~Fn0189.08 on G11/04 

   generates Clear6, reducing the number of Clear6 inputs by 3. 

 

On the two "MICROPROGRAM DECODE" pages: 

   The waveform representing a microprogram step goes LOW 

   when the appropriate Function & Counter decode inputs, 

   and any "OTHER CONDITIONALS" used, are ALL HIGH. 

On the two "GATING SIGNALS" pages (and elsewhere): 

   A primary gating signal (like FtA LtA RtA) goes HIGH if ANY 

      of the microprogram step waveforms which use it is LOW. 

   A secondary gating signal (like btA or ttA) goes HIGH if Phase2 

      is high and any corresponding primary signal is HIGH. 

The purpose of the ~~Z2 input to ~Fn15.10getPTS on page 2 is 

   explained below the "INPUT OUTPUT & TERMINATE" page below. 

 

The page "GATING SIGNALS 1 of 2" shows gating inputs to 

   the A-register Q-register & J-register, the Peripheral 

   Address register (P), the Instruction register (I), the 

   microprogram counter (C), and the program level latch (E), 

The P & I registers use LSA 553 single-stage latches, so 

   MtP & MtI are only used to generate their clocks. tP & tI. 

"jcA" (my name) is "Just Clear A", used in Multiply step 8. 

 

On the page "GATING SIGNALS 2 of 2": 

   the lower part relates to the gating the Adder inputs, and 

   the upper part relates to the M-register and to store control. 

Although the microprogram diagram contains terms like TR and TW, the 

microprogram hardware uses four different signals, which I've named: 

   IstTrTW: a read/write cycle, transferring M to Store, 



 

920M EXPLANATIONS    Terry Froggatt October 2023  Page 14 of 16  

 

   MTrTw:   a read/write cycle, transferring Store to M, 

   WxR:     Write without Read, 

   RxW:     Read without Write. 

"jcM" (my name) is "Just Clear M", used in Jump-if-Zero step 8. 

 

I only partially understand the "READ WRITE & CLEAR" circuit page. 

The general scheme is clear enough: 

   uTr from the GATING SIGNALS sends a TR to the store(s), 

      and sets the "Read" latch which is cleared by their reply, 

   uTw from the GATING SIGNALS sends a TW to the store(s), 

      and sets the "Write" latch which is cleared by their reply, 

   both of these send a signal "To Timing", to hold the CPU, 

   ~IstPh2 from the GATING SIGNALS sets the "Ignore Store" 

      latch, which is cleared at the end of cycle. 

Less clear is: 

   why another latch which I've called "Pending Write" is also required, 

   why there appear to be further read & write latches, driving display 

      outputs, built around the -75 LSA on the "RESET & TIMING" page, 

   and the overall sequence of signals between the two pages. 

 

I only partially understand the "RESET & TIMING" circuit page. 

   <?> means I'm not sure whether this pin is an input or output. 

This page includes the three wide LSAs. 

   Each occupies three rows, but uses only two rows of 13 pins. 

      LSA type "-G?" at G55-57 has pins in G55 & G56 

      LSA type "-75" at H44-46 has pins in H45 & H46 

      LSA type "-76" at H48-50 has pins in H49 & H50 

   I've printed "H46" & "H50" and the associated pin numbers 

      in italic; none of the pins in row G55 are used. 

   The normal ground pin 1 and +5v pin 15 are not available; 

      on -75 & -76, both pin 14s and a pin 2 are used respectively, 

      as I've shown, (the reverse of what might be expected). 

This page also shows all uses of the +5Vaux & -5Vaux rails, 

   to the LSAs at G52 & G53, and to the wide LSA -G? above. 

The two F54 LSAs are related to the marginal testing of LSAs 

   -75 & -76, each of which has 6 adjustment potentiometers. 

CYCLE STOP is implemented by grounding SKTG/37, or by a low 

   on ~CycleStopA from the Reset circuitry, but neither take 

   effect until CycleStopC goes high within the timing cycle. 

   (It is not clear whether this can happen between 

   Control steps 1 TR & 2 TW or Function 10 steps 8 TR & 9 TW; 

   if it can, the store contents could get lost). 

ORDER STOP is implemented by grounding SKTG/15, but it does 

   not take effect until a step marked STOP in the microprogram 

   is reached, and PhaseC goes high within the timing cycle. 

The Stopped latch can be cleared by a pulse generated by H45 

   from a high on RESTART at SKTG/38, which is normally low; 

   it is also cleared by Reset, although the CPU will 

   not run until the Reset signal itself is removed. 

The SKTG/33 RESETK and SKTG/08 ~JUMPK inputs are covered 

   under "Control Panel interface on SKTG" above. 

 

On the "PERIPHERAL ADDRESS REGISTER" circuit page: 

One half of the 2-bit latch D31 is unused. 

Although I've named some type 553 LSA two-bit latches pins 

   as in & ~in, and out & ~out, for some bits the direct and 

   inverse signals (for both input & output) are reversed. 

I've shown that named pins "Preg11 Preg12 Preg13 go to 

   I/O request routing", but although I have also named 

   pins ~Preg12 and ~Preg13, they are not used anywhere. 

 

On the "INPUT OUTPUT & TERMINATE" circuit page: 

It is not clear why G61/02 is required here to invert Preg13, 

   given that there is an unused ~Preg13 at D46/02 (as above). 

I've called this signal ~Preg13a, 

   but I've not drawn lines to its two uses on this page, 

   just as I've not drawn lines to other Preg or ~Preg uses. 

As said earlier, I deciphered Input/Output (function 15) step 10 



 

920M EXPLANATIONS    Terry Froggatt October 2023  Page 15 of 16  

 

   by reference to page 17 of 24 in "Technical Information", as: 

      PTA1 (notM12)   |   A (notM13) 

      PTA2 (M12)      | 

      SUPPRESS        | 

      COUNT (notZ2)   | 

      SZ1             | 

      RCP (Z1,P11     | 

      P12,P13)        | 

This implies that either PTA1 (IFUtA) or PTA2 (PTStA) is gated into 

   the input side of the A-register according to M12, but this only 

   gated through to the output side if M13 indicates an input. 

But it is not wired like that. IFUtA or PTStA themselves take M13 

   into account, and both cause "tA" in the second phase as usual. 

Terminate (RPC, 15 7168) is treated much like an output, but one 

   which generates an immediate reply. The "Term" signal goes to 

   three INTERRUPT LOGIC gates, and by a pink wire to the II latch. 

For each input & output, initially, bistables Z1 and Z2 are clear. 

   Functions 14 & 15 initiate an I/O operation using "SZ1" 

   which sets Z1 and raises one of the four request signals. 

   The same microprogram steps also use "SUPPRESSCOUNT if not Z2", 

   so the step is repeated until Z2 is set by a reply. The next 

   microstep always includes "0TZ" which clears both Z1 & Z2. 

For block transfer, this sequence is repeated; the 0TZ in step 

   14or78 being harmless when it follows the 0TZ in step 77. 

 

When data is read from the Application Interface (PLC), by Function 

   14 or 15, whatever data is on PLC is repeatedly copied into the 

   A-register until Z2 is set, and the final value is retained. 

When data is read from the Paper Tape Station (SKTH), by Function 

   15, a different approach is used, because each use of the PTStA 

   waveform shifts the A-register 7 places. This explains the ~~Z2 

   input to ~Fn15.10getPTS on page 2 of the MICROPROGRAM DECODE: 

   reader data is only transferred, once, when the reply sets Z2. 

There is an aspect of I/O which I've not understood. 

   The inputs to SZ1 (F32/02) & SUPPRESSCOUNTif~Z2 (F23/02) are: 

      Fn14bt.12+C7      Fn14bt.12+C7-Z2 

      Fn14bt.13-C7      Fn14bt.13-C7-Z2 

      Fn15.10getIFU     Fn13.09 which is irrelevant here 

      Fn15.10-Z2        Fn15.10-Z2 

   Note that the last signal in both columns is the same. 

   Why does SZ1 have an input which depends on Z2? And why does 

      IFU input differ from IFU output, PTS input or PTS output? 

   If this Z2 is deleted then the last two terms in the left column 

      reduce to just Fn15.10, as might have been expected. 

   Conversely, given that Z2 is initially zero, why not add Z2 

      to the other terms in the left column, saving some gates? 

 

 

Partial M-register Operations 
 

A 920B/903, and a 920M, can have up to 8*8K store modules, 

   and "Module bits" 14-16 are used to address them. 

A 920C/905 can have up to 16*8K store modules, 

   and "Module bits" 14-17 are used to address them. 

 

To form the operand address, the microcode has to take only 

  bits 1-13 of the instruction, and splice in the Module bits 

  (except, on 920C/905, in absolute mode for a non-jump). 

It does not matter what the remaining high bit(s) are set to. 

If the instruction is modified, the 18-bit contents of the 

   current level B-register are added later. 

 

In Function 11, the microcode has to save the SCR thus: 

   bits 1-13 into the operand, setting the other bits to zero, 

   module bits into the Q-register, setting the other bits to zero. 

 

On the 920B/903, 



 

920M EXPLANATIONS    Terry Froggatt October 2023  Page 16 of 16  

 

   To form the operand address, 

      getting bits 1-13 is achieved by omitting DTF2, and 

      the module bits 14-16 are gated by MtI, sheet A19. 

   In function 11, 

      getting bits 1-13 is achieved by omitting DTF2, and 

      getting bits 14-18 is achieved by omitting DTF1. 

 

How is this done on the 920M? 

   The gating signal to transfer the M-register input 

   into the M-register output is split three ways: 

      8btM: the least-significant 8 bits, 

            to reduce the fan-out as for other transfer signals, 

      3ttM: (or Mpart) the 3 module bits, and 

      7ttM: the remaining 7 more-significant bits. 

   Generally all three signals are pulsed together, 

   but the 3ttM or Mpart signal is also pulsed by: 

      control step C=4, which also pulses the I-register transfer: 

         step C=1 reads the SCR into M 

         step C=2 sets M to M+1 (if not NG) and writes it back 

         step C=3 sets J to M-1 and reads instruction at J into M 

         step C=4 copies J to M-input, 

            but Mpart only transfers the module bits to M-output, 

            thus leaving the local operand address in M bits 1-16, 

            (and M18 still holds the modifier flag if relevant). 

            | JTF FTM CLEARC7 (C2 if M18=0) | Mpart I | 

      or by function 11 step C=10: 

         step C=8 copies M into Q and reads the SCR into M 

         step C=9 copies Q into J 

         step C=10 cleverly does the rest with 

            | MtFpart FtQ CLEAR6 | Mpart Q Ist TR TW | 

            MtFpart gates the 3 module bits via the adder to Q, and 

            since M-input is cleared and not loaded here, Mpart will 

            clear the 3 module bits of M-output before TW writes it. 

 

Insofar as I can read the original microcode diagram, 

   both "Mpart"s look the same, and indeed are wired to the 

      same gate, but labelled something shorter than "M14-16", 

   the "MTFpart" differs and looks longer, probably "MTF14-16". 

 

On the page "GATING SIGNALS 2 of 2": 

   The "~Control.04-NGA" waveform appears three times: 

      at F07/05 to generate the FtM waveform, 

      at E11/13 to suppress the tM waveforms which normally follows, 

      at F19/04 to generate just the 3ttM waveform specifically. 

   The "Fn11.10" waveform appears twice: 

      at F19/03 to generate just the 3ttM waveform specifically, 

         the FtM waveform is not required, and so tM is not generated. 

      at E28/10 to generate the MtF14-16 waveform. 

   The gates used to generate MtF14-16 are slightly odd. 

      LSA E28 is the only type 502 in the 920M, 

         which appears to function identically to an LSA type 562. 

      The only other LSAs with types starting "50" are 504 & 509, 

         both of which occur only once and both of which 

         have deck wiring which suggests evolution. 

      LSA E05 is a long way from E28, suggesting that the inverter 

         used here was pressed into service late in the day. 

 

 

*** EOF *** 

 


